5 years ago

Iron(III)-Catalyzed Chlorination of Activated Arenes

Iron(III)-Catalyzed Chlorination of Activated Arenes
Mohamed A. B. Mostafa, Daugirdas T. Racys, Andrew Sutherland, Rosalind M. Bowley, Martyn C. Henry
A general and regioselective method for the chlorination of activated arenes has been developed. The transformation uses iron(III) triflimide as a powerful Lewis acid for the activation of N-chlorosuccinimide and the subsequent chlorination of a wide range of anisole, aniline, acetanilide, and phenol derivatives. The reaction was utilized for the late-stage mono- and dichlorination of a range of target compounds such as the natural product nitrofungin, the antibacterial agent chloroxylenol, and the herbicide chloroxynil. The facile nature of this transformation was demonstrated with the development of one-pot, tandem, iron-catalyzed dihalogenation processes allowing highly regioselective formation of different carbon–halogen bonds. The synthetic utility of the resulting dihalogenated aryl compounds as building blocks was established with the synthesis of natural products and pharmaceutically relevant targets.

Publisher URL: http://dx.doi.org/10.1021/acs.joc.7b01225

DOI: 10.1021/acs.joc.7b01225

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.