3 years ago

Cumulative Effect of Solvent and Ligand Dielectric around the Nanoparticles: Merging Past Century Theories into a Singular Scaling Equation

Cumulative Effect of Solvent and Ligand Dielectric around the Nanoparticles: Merging Past Century Theories into a Singular Scaling Equation
Sujit Kumar Ghosh, Hirak Chatterjee
The brilliant colors of dispersions of metallic colloids have been fascinating since antiquity, long before our understanding of light–matter interactions. The ability of noble-metal colloids to manipulate light at the nanoscale has opened up the emerging research area called plasmonics. Metals are considered to be either conductors in electronics or reflectors in optics. The Drude model of electron conduction, which is an application of kinetic theory to electrons in a solid, was proposed in 1900 by Paul Drude to explain the transport properties of electrons in metals. On the other hand, in 1908, Gustav Mie published his seminal work on the simulation of the color effects connected with colloidal gold particles using the classical Maxwell equations, which is popularly known as Mie scattering theory. The physical origin of light absorption by metal nanoparticles is the coherent oscillation of the conduction-band electrons, coined as localized surface plasmon resonance (LSPR). The resonance frequency of this LSPR is strongly dependent on the size, shape, interparticle interactions, dielectric properties, and local environment of the nanoparticles. In this article, we aim to elucidate the epicenter of the sensitivity of the localized surface plasmon resonance to the local dielectric environments around the ligand-stabilized gold nanoparticles that merges the Drude electron conduction model and Mie scattering theory proposed from two different perspectives in the historical achievements of scientific discoveries.

Publisher URL: http://dx.doi.org/10.1021/acs.jpcc.7b05243

DOI: 10.1021/acs.jpcc.7b05243

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.