5 years ago

Helium Droplet-Mediated Deposition and Aggregation of Nanoscale Silver Clusters on Carbon Surfaces

Helium Droplet-Mediated Deposition and Aggregation of Nanoscale Silver Clusters on Carbon Surfaces
Martí Pi, Alexander O. Mitrushchenkov, María Pilar de Lara-Castells, Carlos Cabrillo, Luis F. Gómez, Ricardo Fernández-Perea, Andrey F. Vilesov
We present experiments and calculations of the deposition and aggregation of silver clusters embedded in helium droplets onto an amorphous carbon surface at room temperature. Calculations were also performed for deposition onto a graphene surface. They involve potentials for the interaction of carbon atoms with silver and helium atoms, provided by ab initio calculations. The numerical simulations were performed for few-nanometer-sized silver clusters including up to 5000 Ag atoms and He droplets with up to 105 4He atoms. The fluid nature of the 4He droplet is accounted for by the renormalization of the He–He interaction potential. The numerical results are consistent with deposition experiments with an average number of 3000 Ag atoms per 4He droplet and indicate that the aggregation of the silver clusters on the carbon surface is mediated by secondary droplet impacts. They also reveal nontrivial dynamics of the Ag clusters within the carrier droplet, showing a tendency to drift toward the droplet surface. These findings are of relevance in understanding the heterogeneous deposition patterns (large ramified islands) developed for very large droplets with an average number of Ag atoms per droplet within the million range. Finally, the simulations of large (5000 atoms) Ag cluster deposition on graphene reveals strong superdiffusive behavior. In stark contrast, the diffusion is negligible on the amorphous carbon surface.

Publisher URL: http://dx.doi.org/10.1021/acs.jpcc.7b08109

DOI: 10.1021/acs.jpcc.7b08109

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.