3 years ago

Streamlined Synthesis of Biomonomers for Bioresourced Materials: Bisfuran Diacids, Diols, and Diamines via Common Bisfuran Dibromide Intermediates

Streamlined Synthesis of Biomonomers for Bioresourced Materials: Bisfuran Diacids, Diols, and Diamines via Common Bisfuran Dibromide Intermediates
Lu Wang, Yuji Eguchi, Eugene Y.-X. Chen
A bisfuran dibromide has been established as the versatile and common intermediate for the high-yield synthesis of the three important classes of bisfuran monomers for furan-based renewable materials, bisfuran diacids, diols, and diamines. The general synthetic route involves a coupling reaction of 2-methylfuran with a ketone (acetone or cyclohexanone) under acidic conditions and a bromination reaction of the resulting bisfuran dimethyl compound to produce the bisfuran dibromide intermediate. This dibromide intermediate is subsequently converted to the corresponding bisfuran diacid (via oxidation reaction with KMnO4 under basic conditions), bisfuran diol (by hydrolysis reaction under mild basic conditions), and bisfuran diamine (through the Gabriel reaction). The versatility of the bisfuran dibromide intermediate and the effective transformation into the monomers with high to quantitative yield typically without the need for further purification highlight the two attractive features and potential for large-scale production.

Publisher URL: http://dx.doi.org/10.1021/acs.iecr.7b02920

DOI: 10.1021/acs.iecr.7b02920

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.