5 years ago

Investigations into the Reusability of Amidoxime-Based Polymeric Adsorbents for Seawater Uranium Extraction

Investigations into the Reusability of Amidoxime-Based Polymeric Adsorbents for Seawater Uranium Extraction
Gary A. Gill, Jordana R. Wood, Christopher J. Janke, Horng-Bin Pan, Li-Jung Kuo, Nicholas Schlafer, Richard T. Mayes, Sadananda Das, Erich Schneider, Jonathan E. Strivens, Chien M. Wai, Margaret F. Byers
The ability to reuse amidoxime-based polymeric adsorbents is a critical component in reducing the overall cost of the technology to extract uranium from seawater. This report describes an evaluation of adsorbent reusability in multiple reuse (adsorption/stripping) cycles in real seawater exposures with potassium bicarbonate (KHCO3) elution using several amidoxime-based polymeric adsorbents. The KHCO3 elution technique achieved ∼100% recovery of uranium adsorption capacity in the first reuse. Subsequent reuses showed significant drops in adsorption capacity. After the fourth reuse with the ORNL AI8 adsorbent, the 56-day adsorption capacity dropped to 28% of its original capacity. FTIR spectra revealed that there was a conversion of the amidoxime ligands to carboxylate groups during extended seawater exposure, becoming more significant with longer exposure times. Ca and Mg adsorption capacities also increased with each reuse cycle supporting the hypothesis that long-term exposure resulted in converting amidoxime to carboxylate, enhancing the adsorption of Ca and Mg. Shorter seawater exposure (adsorption/stripping) cycles (28 vs 42 days) had higher adsorption capacities after reuse, but the shorter exposure cycle time did not produce an overall better performance in terms of cumulative exposure time. Recovery of uranium capacity in reuses may also vary across different adsorbent formulations. Through multiple reuses, the AI8 adsorbent can harvest 10 g uranium/kg adsorbent in ∼140 days, using a 28-day adsorption/stripping cycle, a performance much better than would be achieved with a single use of the adsorbent through a very long-term exposure (saturation capacity of 7.4 g U/kg adsorbent). A time dependent seawater exposure model to evaluate the cost associated with reusing amidoxime-based adsorbents in real seawater exposures was developed. The predicted cost to extract uranium from seawater ranged from $610/kg U to $830/kg U. Model simulation suggests that a short seawater exposure cycle (<15 days) is the optimal deployment period for lower uranium production cost in seawater uranium mining.

Publisher URL: http://dx.doi.org/10.1021/acs.iecr.7b02893

DOI: 10.1021/acs.iecr.7b02893

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.