5 years ago

Electrochemical Fluorination and Radiofluorination of Methyl(phenylthio)acetate Using Tetrabutylammonium Fluoride (TBAF).

Khan, Gomez, Balandeh, Sadeghi, Allison, Rios, Shirazi, Waldmann
Electrochemical fluorination of methyl(phenylthio)acetate was achieved using tetrabutylammonium fluoride (TBAF). Electrochemical fluorination was performed under potentiostatic anodic oxidation using an undivided cell in acetonitrile containing TBAF and triflic acid. The influence of several parameters including: oxidation potential, time, temperature, sonication, TBAF concentration and triflic acid concentration on fluorination efficiency were studied. It was found that the triflic acid to TBAF concentration ratio plays a key role in the fluorination efficiency. Electrochemical fluorination resulted in formation of mono-fluorinated methyl 2-fluoro-2-(phenylthio)acetate verified by gas chromatography-mass spectrometry (GC-MS) and nuclear magnetic resonance (NMR) Spectroscopy. Under optimum conditions 44 ± 3% mono fluorination yield was obtained after a 30 min electrolysis. Electrochemical radiofluorination for the synthesis of methyl 2-[(18)F]fluoro-2-(phenothio) acetate was also achieved with the same optimized electrochemical cell parameters where TBAF was first passed through an anion exchange resin containing fluorine-18. A radiochemical fluorination efficiency of 7 ± 1% was achieved after 30 min of electrolysis.

Publisher URL: http://doi.org/10.1149/2.0941709jes

DOI: 10.1149/2.0941709jes

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.