5 years ago

Highly Efficient Non-Fullerene Organic Photovoltaics Processed from o-Xylene without Using Additives

Highly Efficient Non-Fullerene Organic Photovoltaics Processed from o-Xylene without Using Additives
Tzung-Wei Tsai, Yang-Yen Yu, Chih-Ping Chen, Chun-Chen Yang
Most efficient organic photovoltaic (OPV) devices are fabricated using halogenated solvents, which are hazardous and environmentally unfriendly. From an industrial perspective, green solvents are necessary for the roll-to-roll production of OPV modules. In this study, we fabricated nonfullerene (NF) OPV devices that are based on the blend films of PTB7-Th and 3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone)-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3-d:2′,3′-d′]-s-indaceno[1,2-b:5,6-b′]-dithiophene (ITIC) by using o-xylene and tetrahydrofuran (THF) as the processing solvents and chlorobenzene (CB) and o-dichlorobenzene as the control solvents. We compared the variations in the ultraviolet visible absorption, atomic force microscopy-derived phase morphologies, space-charge-limited current carrier mobilities, and power conversion efficiency (PCE) of the related OPV devices. The high solubility of ITIC and PTB7-Th in the solvents yielded PCE of 8.11% and 6.79% for the o-xylene- and THF-derived devices, respectively. The PCE of 8.11% is among the highest performance reported to date for NF OPV devices fabricated using a green solvent (without additives or post-treatment). Furthermore, this PCE was suppressed in the CB-based device (PCE: 7.41%) because of the clearly defined morphology and higher and balanced carrier mobility.

Publisher URL: http://dx.doi.org/10.1021/acs.jpcc.7b07867

DOI: 10.1021/acs.jpcc.7b07867

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.