3 years ago
Dynamics of Symmetry-Breaking Stacking Boundaries in Bilayer MoS2

Steven G. Louie, Christian Merino, Jim Ciston, Colin Ophus, Aiming Yan, Alex Zettl, Diana Y. Qiu, Chin Shen Ong
Crystal symmetry of two-dimensional (2D) materials plays an important role in their electronic and optical properties. Engineering symmetry in 2D materials has recently emerged as a promising way to achieve novel properties and functions. The noncentrosymmetric structure of monolayer transition metal dichalcogenides (TMDCs), such as molybdenum disulfide (MoS2), has allowed for valley control via circularly polarized optical excitation. In bilayer TMDCs, inversion symmetry can be controlled by varying the stacking sequence, thus providing a pathway to engineer valley selectivity. Here, we report the in situ integration of AA′ and AB stacked bilayer MoS2 with different inversion symmetries by creating atomically sharp stacking boundaries between the differently stacked domains, via thermal stimulation and electron irradiation, inside an atomic-resolution scanning transmission electron microscopy. The setup enables us to track the formation and atomic motion of the stacking boundaries in real time and with ultrahigh resolution which enables in-depth analysis on the atomic structure at the boundaries. In conjunction with density functional theory calculations, we establish the dynamics of the boundary nucleation and expansion and further identify metallic boundary states. Our approach provides a means to synthesize domain boundaries with intriguing transport properties and opens up a new avenue for controlling valleytronics in nanoscale domains via real-time patterning of domains with different symmetry properties.
Publisher URL: http://dx.doi.org/10.1021/acs.jpcc.7b08398
DOI: 10.1021/acs.jpcc.7b08398
You might also like
Never Miss Important Research
Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.
Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.