3 years ago

Investigation of the ‘double cross’ splitting mechanism of single-crystal diamond under nanoindentation via molecular dynamics simulation

Hao Ke, Jian Liu, Linyuan Wang, Jie Ma


Elucidating the mechanical response of diamond is a difficult task due to its ultrahard nature. Here, we applied a molecular dynamics (MD) method to investigate the mechanical response of single-crystal diamond under nanoindentation. There was no obvious “pop in” phenomenon on the load–depth curve, and the elastic modulus deduced from the curve was 1128 GPa, which was similar to the value obtained from experimental measurements. Results from computed tomography (CT) and the coordination number showed that the distribution of the mismatched C atoms around the deformation zone took the form of a ‘double cross.’ The atoms around the indenter tip could be divided into two zones, a translation zone and a lattice distortion zone, based on their movements. Subsequent first-principles calculations revealed that the C-atom displacement barrier varied significantly with direction, which resulted in shear stress between the two zones and the formation of the double-cross splitting.

Graphical Abstract

The displacement of the atoms around the indenter tip

Publisher URL: https://link.springer.com/article/10.1007/s00894-017-3467-9

DOI: 10.1007/s00894-017-3467-9

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.