3 years ago

Stoichiometric control of the density of states in PbS colloidal quantum dot solids

Maria A. Loi, Daniel M. Balazs, Maksym V. Kovalenko, Max Döbeli, Klaas I. Bijlsma, Dmitry N. Dirin, Hong-Hua Fang

Colloidal quantum dots, and nanostructured semiconductors in general, carry the promise of overcoming the limitations of classical materials in chemical and physical properties and in processability. However, sufficient control of electronic properties, such as carrier concentration and carrier mobility, has not been achieved until now, limiting their application. In bulk semiconductors, modifications of electronic properties are obtained by alloying or doping, an approach that is not viable for structures in which the surface is dominant. The electronic properties of PbS colloidal quantum dot films are fine-tuned by adjusting their stoichiometry, using the large surface area of the nanoscale building blocks. We achieve an improvement of more than two orders of magnitude in the hole mobility, from below 10–3 to above 0.1 cm2/V⋅s, by substituting the iodide ligands with sulfide while keeping the electron mobility stable (~1 cm2/V⋅s). This approach is not possible in bulk semiconductors, and the developed method will likely contribute to the improvement of solar cell efficiencies through better carrier extraction and to the realization of complex (opto)electronic devices.

Publisher URL: http://advances.sciencemag.org/cgi/content/short/3/9/eaao1558

DOI: 10.1126/sciadv.aao1558

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.