3 years ago

The Excited-State Triple Proton Transfer Reaction of 2,6-Diazaindoles and 2,6-Diazatryptophan in Aqueous Solution

The Excited-State Triple Proton Transfer Reaction of 2,6-Diazaindoles and 2,6-Diazatryptophan in Aqueous Solution
Pi-Tai Chou, Jiun-Yi Shen, Yi-Han Chen, Yen-Hao Hsu, Kun-You Chung, Yi-An Chen, Yi-Ting Chen, Chi-Lin Chen
3-Me-2,6-diazaindole ((2,6-aza)Ind) was strategically designed and synthesized to probe water molecule catalyzed excited-state proton transfer in aqueous solution. Upon electronic excitation (λmax ∼ 300 nm), (2,6-aza)Ind undergoes N(1)–H to N(6) long-distance proton transfer in neutral H2O, resulting in normal (340 nm) and proton-transfer tautomer (480 nm) emissions with an overall quantum yield of 0.25. The rate of the water-catalyzed proton transfer shows a prominent H/D kinetic isotope effect, which is determined to be 8.3 × 108 s–1 and 4.7 × 108 s–1 in H2O and D2O, respectively. Proton inventory experiments indicate the involvement of two water molecules and three protons, which undergo a relay type of excited-state triple proton transfer (ESTPT) in a concerted, asynchronous manner. The results demonstrate for the first time the fundamental of triple proton transfer in pure water for azaindoles as well as pave a new avenue for 2,6-diazatryptophan, an analogue of tryptophan exhibiting a similar ESTPT property with (2,6-aza)Ind, to probe biowaters in proteins.

Publisher URL: http://dx.doi.org/10.1021/jacs.7b01672

DOI: 10.1021/jacs.7b01672

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.