5 years ago

β-Hydride Elimination and C–H Activation by an Iridium Acetate Complex, Catalyzed by Lewis Acids. Alkane Dehydrogenation Cocatalyzed by Lewis Acids and [2,6-Bis(4,4-dimethyloxazolinyl)-3,5-dimethylphenyl]iridium

β-Hydride Elimination and C–H Activation by an Iridium Acetate Complex, Catalyzed by Lewis Acids. Alkane Dehydrogenation Cocatalyzed by Lewis Acids and [2,6-Bis(4,4-dimethyloxazolinyl)-3,5-dimethylphenyl]iridium
Ashley M. Wright, Karsten Krogh-Jespersen, Changjian Guan, Karen I. Goldberg, Yang Gao, Akshai Kumar, Meng Zhou, Thomas J. Emge, Alan S. Goldman
NaBArF4 (sodium tetrakis[(3,5-trifluoromethyl)phenyl]borate) was found to catalyze reactions of (Phebox)IrIII(acetate) (Phebox = 2,6-bis(4,4-dimethyloxazolinyl)-3,5-dimethylphenyl) complexes, including (i) β-H elimination of (Phebox)Ir(OAc)(n-alkyl) to give (Phebox)Ir(OAc)(H) and the microscopic reverse, alkene insertion into the Ir–H bond of (Phebox)Ir(OAc)(H), and (ii) hydrogenolysis of the Ir–alkyl bond of (Phebox)Ir(OAc)(n-alkyl) and the microscopic reverse, C–H activation by (Phebox)Ir(OAc)(H), as indicated by H/D exchange experiments. For example, β-H elimination of (Phebox)Ir(OAc)(n-octyl) (2-Oc) proceeded on a time scale of minutes at −15 °C in the presence of (0.4 mM) NaBArF4 as compared with a very slow reaction at 125 °C in the absence of NaBArF4. In addition to NaBArF4, other Lewis acids are also effective. Density functional theory calculations capture the effect of the Na+ cation and indicate that it operates primarily by promoting κ2–κ1 dechelation of the acetate anion, which opens the coordination site needed to allow the observed reaction to proceed. In accord with the effect on these individual stoichiometric reactions, NaBArF4 was also found to cocatalyze, with (Phebox)Ir(OAc)(H), the acceptorless dehydrogenation of n-dodecane.

Publisher URL: http://dx.doi.org/10.1021/jacs.6b12995

DOI: 10.1021/jacs.6b12995

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.