4 years ago

Geometric Phase Effects in Nonadiabatic Dynamics near Conical Intersections

Geometric Phase Effects in Nonadiabatic Dynamics near Conical Intersections
Ilya G. Ryabinkin, Loïc Joubert-Doriol, Artur F. Izmaylov
Dynamical consideration that goes beyond the common Born–Oppenheimer approximation (BOA) becomes necessary when energy differences between electronic potential energy surfaces become small or vanish. One of the typical scenarios of the BOA breakdown in molecules beyond diatomics is a conical intersection (CI) of electronic potential energy surfaces. CIs provide an efficient mechanism for radiationless electronic transitions: acting as “funnels” for the nuclear wave function, they enable rapid conversion of the excessive electronic energy into the nuclear motion. In addition, CIs introduce nontrivial geometric phases (GPs) for both electronic and nuclear wave functions. These phases manifest themselves in change of the wave function signs if one considers an evolution of the system around the CI. This sign change is independent of the shape of the encircling contour and thus has a topological character. How these extra phases affect nonadiabatic dynamics is the main question that is addressed in this Account.

Publisher URL: http://dx.doi.org/10.1021/acs.accounts.7b00220

DOI: 10.1021/acs.accounts.7b00220

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.