5 years ago

Cortical Activation during Action Observation, Action Execution, and Interpersonal Synchrony in Adults: A functional Near-Infrared Spectroscopy (fNIRS) Study.

Culotta, Bhat, Trost, Tsuzuki, Pelphrey, Eilbott, Hoffman
Introduction: Humans engage in Interpersonal Synchrony (IPS) as they synchronize their own actions with that of a social partner over time. When humans engage in imitation/IPS behaviors, multiple regions in the frontal, temporal, and parietal cortices are activated including the putative Mirror Neuron Systems (Iacoboni, 2005; Buxbaum et al., 2014). In the present study, we compared fNIRS-based cortical activation patterns across three conditions of action observation ("Watch" partner), action execution ("Do" on your own), and IPS (move "Together"). Methods: Fifteen typically developing adults completed a reach and cleanup task with the right arm while cortical activation was examined using a 24-channel, Hitachi fNIRS system. Each adult completed 8 trials across three conditions (Watch, Do, and Together). For each fNIRS channel, we obtained oxy hemoglobin (HbO2) and deoxy hemoglobin (HHb) profiles. Spatial registration methods were applied to localize the cortical regions underneath each channel and to define six regions of interest (ROIs), right and left supero-anterior (SA or pre/post-central gyri), infero-posterior (IP or angular/supramarginal gyri), and infero-anterior (IA or superior/middle temporal gyri) regions. Results: In terms of task-related differences, the majority of the ROIs were more active during Do and Together compared to Watch. Only the right/ipsilateral fronto-parietal and inferior parietal cortices had greater activation during Together compared to Do. Conclusions: The similarities in cortical activation between action execution and IPS suggest that neural control of IPS is more similar to its execution than observational aspects. To be clear, the more complex the actions performed, the more difficult the IPS behaviors. Secondly, IPS behaviors required slightly more right-sided activation (vs. execution/observation) suggesting that IPS is a higher-order process involving more bilateral activation compared to its sub-components. These findings provide a neuroimaging framework to study imitation and IPS impairments in special populations such as infants at risk for and children with ASD.

Publisher URL: http://doi.org/10.3389/fnhum.2017.00431

DOI: 10.3389/fnhum.2017.00431

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.