5 years ago

Brazilin inhibits the Zn2+-mediated aggregation of amyloid β-protein and alleviates cytotoxicity

Brazilin inhibits the Zn2+-mediated aggregation of amyloid β-protein and alleviates cytotoxicity
Interactions of Zn2+ with amyloid β-protein (Aβ) and the subsequent induction of Aβ aggregation have been implicated in the pathogenesis of Alzheimer's disease (AD). The development of small-compound inhibitors against Zn2+-mediated Aβ aggregation is therefore greatly desired. In this study, brazilin was used to inhibit Zn2+-mediated Aβ aggregation and alleviate its cytotoxicity. The binding properties of brazilin and Zn2+ were first probed using Fourier transform infrared (FTIR) spectroscopy and isothermal titration calorimetry (ITC) assays. Both the FTIR and ITC results have shown that brazilin is able to bind Zn2+ in a physiologically suitable range of concentrations. The dissociation constant (K d) between brazilin and Zn2+ was about 46.0±6.8μM, which makes brazilin a potential drug model for the chelation of free Zn2+. Moreover, the higher affinity of brazilin for Aβ42 (K d =2.5±1.6μM) than that of Zn2+ (K d =6.2±0. 9μM), enables brazilin to sequester Zn2+ from the Aβ42-Zn2+ complex. In addition, the inhibitory effects of brazilin on Zn2+-mediated Aβ aggregation were examined using the Thioflavin T fluorescence assay, transmission electron microscopy and cytotoxicity assays. It was found that brazilin showed remarkable inhibitory capability against Zn2+-induced aggregation of Aβ42. Furthermore, the Zn2+-mediated cytotoxicity of Aβ42 was also largely mitigated under the influence of brazilin. This study therefore provides further insights into the role of Zn2+ in the Aβ42 aggregation pathway, indicating potential new strategies for the design of small compounds with therapeutic potential for AD.

Publisher URL: www.sciencedirect.com/science

DOI: S0162013417303331

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.