5 years ago

Development of a 13C NMR Chemical Shift Prediction Procedure Using B3LYP/cc-pVDZ and Empirically Derived Systematic Error Correction Terms: A Computational Small Molecule Structure Elucidation Method

Development of a 13C NMR Chemical Shift Prediction Procedure Using B3LYP/cc-pVDZ and Empirically Derived Systematic Error Correction Terms: A Computational Small Molecule Structure Elucidation Method
Paul-James Jones, Nina C. Gonnella, Om Chaudhary, Klaus Wagner, Reginaldo A. Saraceno, Carl A. Busacca, C. Avery Sader, Zheng Yang, Keith Horspool, Chris H. Senanayake, Dongyue Xin, Keith R. Fandrick, Gordon Hansen, Christofer S. Tautermann
An accurate and efficient procedure was developed for performing 13C NMR chemical shift calculations employing density functional theory with the gauge invariant atomic orbitals (DFT-GIAO). Benchmarking analysis was carried out, incorporating several density functionals and basis sets commonly used for prediction of 13C NMR chemical shifts, from which the B3LYP/cc-pVDZ level of theory was found to provide accurate results at low computational cost. Statistical analyses from a large data set of 13C NMR chemical shifts in DMSO are presented with TMS as the calculated reference and with empirical scaling parameters obtained from a linear regression analysis. Systematic errors were observed locally for key functional groups and carbon types, and correction factors were determined. The application of this process and associated correction factors enabled assignment of the correct structures of therapeutically relevant compounds in cases where experimental data yielded inconclusive or ambiguous results. Overall, the use of B3LYP/cc-pVDZ with linear scaling and correction terms affords a powerful and efficient tool for structure elucidation.

Publisher URL: http://dx.doi.org/10.1021/acs.joc.7b00321

DOI: 10.1021/acs.joc.7b00321

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.