5 years ago

Engineering the Size Distributions of Ordered GaAs Nanowires on Silicon

Engineering the Size Distributions of Ordered GaAs Nanowires on Silicon
Vladimir G. Dubrovski, Gözde Tütüncüoğlu, Martin Friedl, Wonjong Kim, Heidi Potts, Maxime Lagier, Jelena Vukajlovic-Plestina, Anna Fontcuberta i Morral
Reproducible integration of III–V semiconductors on silicon can open new path toward CMOS compatible optoelectronics and novel design schemes in next generation solar cells. Ordered arrays of nanowires could accomplish this task, provided they are obtained in high yield and uniformity. In this work, we provide understanding on the physical factors affecting size uniformity in ordered GaAs arrays grown on silicon. We show that the length and diameter distributions in the initial stage of growth are not much influenced by the Poissonian fluctuation-induced broadening, but rather are determined by the long incubation stage. We also show that the size distributions are consistent with the double exponential shapes typical for macroscopic nucleation with a large critical length after which the nanowires grow irreversibly. The size uniformity is dramatically improved by increasing the As4 flux, suggesting a new path for obtaining highly uniform arrays of GaAs nanowires on silicon.

Publisher URL: http://dx.doi.org/10.1021/acs.nanolett.7b00842

DOI: 10.1021/acs.nanolett.7b00842

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.