3 years ago

Pull-and-Paste of Single Transmembrane Proteins

Pull-and-Paste of Single Transmembrane Proteins
Daniel J. Müller, Tetiana Serdiuk, Stefania A. Mari
How complex cytoplasmic membrane proteins insert and fold into cellular membranes is not fully understood. One problem is the lack of suitable approaches that allow investigating the process by which polypeptides insert and fold into membranes. Here, we introduce a method to mechanically unfold and extract a single polytopic α-helical membrane protein, the lactose permease (LacY), from a phospholipid membrane, transport the fully unfolded polypeptide to another membrane and insert and refold the polypeptide into the native structure. Insertion and refolding of LacY is facilitated by the transmembrane chaperone/insertase YidC in the absence of the SecYEG translocon. Insertion into the membrane occurs in a stepwise, stochastic manner employing multiple coexisting pathways to complete the folding process. We anticipate that our approach will provide new means of studying the insertion and folding of membrane proteins and to mechanically reconstitute membrane proteins at high spatial precision and stoichiometric control, thus allowing the functional programming of synthetic and biological membranes.

Publisher URL: http://dx.doi.org/10.1021/acs.nanolett.7b01844

DOI: 10.1021/acs.nanolett.7b01844

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.