5 years ago

The Interplay between Trap Density and Hysteresis in Planar Heterojunction Perovskite Solar Cells

The Interplay between Trap Density and Hysteresis in Planar Heterojunction Perovskite Solar Cells
Sang-Hoon Bae, Jin-Wook Lee, Do-Kyoung Lee, Seul-Gi Kim, Nam-Gyu Park, Yang Yang, Oliver Lin
Anomalous current–voltage (JV) hysteresis in perovskite (PSK) solar cell is open to dispute, where hysteresis is argued to be due to electrode polarization, dipolar polarization, and/or native defects. However, a correlation between those factors and JV hysteresis is hard to be directly evaluated because they usually coexist and are significantly varied depending on morphology and crystallinity of the PSK layer, selective contacts, and device architecture. In this study, without changing morphology and crystallinity of PSK layer in a planar heterojunction structure employing FA0.9Cs0.1PbI3, a correlation between JV hysteresis and trap density is directly evaluated by means of thermally induced PbI2 regulating trap density. Increase in thermal annealing time at a given temperature of 150 °C induces growth of PbI2 on the PSK grain surface, which results in significant reduction of nonradiative recombination. Hysteresis index is reduced from 0.384 to 0.146 as the annealing time is increased from 5 to 100 min due to decrease in the amplitude of trap-mediated recombination. Reduction of hysteresis by minimizing trap density via controlling thermal annealing time leads to the stabilized PCE of 18.84% from the normal planar structured FA0.9Cs0.1PbI3 PSK solar cell.

Publisher URL: http://dx.doi.org/10.1021/acs.nanolett.7b01211

DOI: 10.1021/acs.nanolett.7b01211

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.