5 years ago

Integrated Hierarchical Cobalt Sulfide/Nickel Selenide Hybrid Nanosheets as an Efficient Three-dimensional Electrode for Electrochemical and Photoelectrochemical Water Splitting

Integrated Hierarchical Cobalt Sulfide/Nickel Selenide Hybrid Nanosheets as an Efficient Three-dimensional Electrode for Electrochemical and Photoelectrochemical Water Splitting
Yang Hou, Min Gyu Kim, Gyutae Nam, Chris Yuan, Kejun Liu, Tao Zhang, Ming Qiu, Xiaodong Zhuang, Xinliang Feng, Jaephil Cho
Developing highly active electrocatalysts for photoelectrochemical water splitting is critical to bring solar/electrical-to-hydrogen energy conversion processes into reality. Herein, we report a three-dimensional (3D) hybrid electrocatalyst that is constructed through in situ anchoring of Co9S8 nanosheets onto the surface of Ni3Se2 nanosheets vertically aligned on an electrochemically exfoliated graphene foil. Benefiting from the synergistic effects between Ni3Se2 and Co9S8, the highly conductive graphene support, and large surface area, the novel 3D hybrid electrode delivers superior electrocatalytic activity toward water reduction in alkaline media, featuring overpotentials of −0.17 and −0.23 V to achieve current densities of 20 and 50 mA cm–2, respectively, demonstrating an electrocatalytic performance on the top of the Ni3Se2- and Co9S8-based electrocatalysts as reported in literature. Experimental investigations and theoretical calculations confirm that the remarkable activity of the obtained material results from the unique 3D hierarchical architecture and interface reconstruction between Ni3Se2 and Co9S8 through Ni–S bonding, which leads to charge redistribution and thus lowers the energy barrier of hydrogen desorption in the water splitting process. Further integration of the 3D hybrid electrode with a macroporous silicon photocathode enables highly active and sustainable sunlight-driven water splitting in both basic media and real river water. The overall water splitting with 10 mA cm–2 at a low voltage of 1.62 V is achieved using our hybrid as both anode and cathode catalysts, which surpasses that of the Ir/C–Pt/C couple (1.60 V) for sufficiently high overpotentials.

Publisher URL: http://dx.doi.org/10.1021/acs.nanolett.7b01030

DOI: 10.1021/acs.nanolett.7b01030

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.