5 years ago

Printing Functional Protein Nanodots on Soft Elastomers: From Transfer Mechanism to Cell Mechanosensing

Printing Functional Protein Nanodots on Soft Elastomers: From Transfer Mechanism to Cell Mechanosensing
Anne Charrier, Fuwei Pi, Kaoutar Bouzalmate, Kheya Sengupta, Laurent Limozin, Astrid Wahl, Ranime Alameddine
Living cells sense the physical and chemical nature of their micro/nano environment with exquisite sensitivity. In this context, there is a growing need to functionalize soft materials with micro/nanoscale biochemical patterns for applications in mechanobiology. This, however, is still an engineering challenge. Here a new method is proposed, where submicronic protein-patterns are first formed on glass and are then printed on to an elastomer. The degree of transfer is shown to be governed mainly by hydrophobic interactions and to be influenced by grafting an appropriate fluorophore onto the core protein of interest. The transfer mechanism is probed by measuring the forces of adhesion/cohesion using atomic force microscopy. The transfer of functional arrays of dots with size down to about 400 nm, on elastomers with stiffness ranging from 3 kPa to 7 MPa, is demonstrated. Pilot studies on adhesion of T lymphocytes on such soft patterned substrates are reported.

Publisher URL: http://dx.doi.org/10.1021/acs.nanolett.7b01254

DOI: 10.1021/acs.nanolett.7b01254

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.