5 years ago

Photoinduced Single- and Multiple-Electron Dynamics Processes Enhanced by Quantum Confinement in Lead Halide Perovskite Quantum Dots

Photoinduced Single- and Multiple-Electron Dynamics Processes Enhanced by Quantum Confinement in Lead Halide Perovskite Quantum Dots
Dayton J. Vogel, Andrei Kryjevski, Talgat Inerbaev, Dmitri S. Kilin
Methylammonium lead iodide perovskite (MAPbI3) is a promising material for photovoltaic devices. A modification of MAPbI3 into confined nanostructures is expected to further increase efficiency of solar energy conversion. Photoexcited dynamic processes in a MAPbI3 quantum dot (QD) have been modeled by many-body perturbation theory and nonadiabatic dynamics. A photoexcitation is followed by either exciton cooling (EC), its radiative (RR) or nonradiative recombination (NRR), or multiexciton generation (MEG) processes. Computed times of these processes fall in the order of MEG < EC < RR < NRR, where MEG is on the order of a few femtoseconds, EC is in the picosecond range, while RR and NRR are on the order of nanoseconds. Computed time scales indicate which electronic transition pathways can contribute to increase in charge collection efficiency. Simulated mechanisms of relaxation and their rates show that quantum confinement promotes MEG in MAPbI3 QDs.

Publisher URL: http://dx.doi.org/10.1021/acs.jpclett.6b03048

DOI: 10.1021/acs.jpclett.6b03048

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.