3 years ago

Cysteine-SILAC Mass Spectrometry Enabling the Identification and Quantitation of Scrambled Interchain Disulfide Bonds: Preservation of Native Heavy-Light Chain Pairing in Bispecific IgGs Generated by Controlled Fab-arm Exchange

Cysteine-SILAC Mass Spectrometry Enabling the Identification and Quantitation of Scrambled Interchain Disulfide Bonds: Preservation of Native Heavy-Light Chain Pairing in Bispecific IgGs Generated by Controlled Fab-arm Exchange
Ewald T. J. van den Bremer, Paul W. H. I. Parren, Janine Schuurman, Rob N. de Jong, Joost P. M. Melis, Patrick Priem, Kai Scheffler, Ramon van den Boogaard, Aran F. Labrijn
Bispecific antibodies (bsAbs) are one of the most versatile and promising pharmaceutical innovations for countering heterogeneous and refractory disease by virtue of their ability to bind two distinct antigens. One critical quality attribute of bsAb formation requiring investigation is the potential randomization of cognate heavy (H) chain/light (L) chain pairing, which could occur to a varying extent dependent on bsAb format and the production platform. To assess the content of such HL-chain swapped reaction products with high sensitivity, we developed cysteine-stable isotope labeling using amino acids in cell culture (SILAC), a method that facilitates the detailed characterization of disulfide-bridged peptides by mass spectrometry. For this analysis, an antibody was metabolically labeled with 13C3,15N-cysteine and incorporated into a comprehensive panel of distinct bispecific molecules by controlled Fab-arm exchange (DuoBody technology). This technology is a postproduction method for the generation of bispecific therapeutic IgGs of which several have progressed into the clinic. Herein, two parental antibodies, each containing a single heavy chain domain mutation, are mixed and subjected to controlled reducing conditions during which they exchange heavy–light (HL) chain pairs to form bsAbs. Subsequently, reductant is removed and all disulfide bridges are reoxidized to reform covalent inter- and intrachain bonds. We conducted a multilevel (Top-Middle-Bottom-Up) approach focusing on the characterization of both “left-arm” and “right-arm” HL interchain disulfide peptides and observed that native HL pairing was preserved in the whole panel of bsAbs produced by controlled Fab-arm exchange.

Publisher URL: http://dx.doi.org/10.1021/acs.analchem.7b02543

DOI: 10.1021/acs.analchem.7b02543

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.