3 years ago

Role of Solvent Water in the Temperature-Induced Self-Assembly of a Triblock Copolymer

Role of Solvent Water in the Temperature-Induced Self-Assembly of a Triblock Copolymer
Minhaeng Cho, Achintya Kundu, Pramod Kumar Verma
Water-soluble triblock copolymers have received much attention in industrial applications and scientific fields. We here show that femtosecond mid-IR pump–probe spectroscopy is useful to study the role of water in the temperature-induced self-assembly of triblock copolymers. Our experimental results suggest two distinct subpopulations of water molecules: those that interact with other water molecules and those involved in the hydration of a triblock copolymer surface. We find that the vibrational dynamics of bulk-like water is not affected by either micellation or gelation of triblock copolymers. The increased population of water interacting with ether oxygen atoms of the copolymer during the unimer to micelle phase transition is important evidence for the entropic role of water in temperature-induced micelle formation at a low copolymer concentration. In contrast, at the critical gelation temperature and beyond, the population of surface-associated water molecules interacting with ether oxygen atoms decreases, which indicates important enthalpic control by water. The present study on the roles of water in the two different phase transitions of triblock copolymers sheds new light on the underlying mechanisms of temperature-induced self-aggregation behaviors of amphiphiles that are ubiquitous in nature.

Publisher URL: http://dx.doi.org/10.1021/acs.jpclett.7b01008

DOI: 10.1021/acs.jpclett.7b01008

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.