3 years ago

Poly[2,5-bis(3-dodecylthiophen-2-yl)thieno[3,2-b]thiophene] Oligomer Single-Crystal Nanowires from Supercritical Solution and Their Anisotropic Exciton Dynamics

Poly[2,5-bis(3-dodecylthiophen-2-yl)thieno[3,2-b]thiophene] Oligomer Single-Crystal Nanowires from Supercritical Solution and Their Anisotropic Exciton Dynamics
Alejandro L. Briseno, Michael D. Barnes, Özlem Usluer, Lei Zhang, Sarah R. Marques, James J. Watkins, Hilary B. Thompson, Benjamin P. Cherniawski, Joelle A. Labastide, Nicholas S. Colella
Supercritical fluids, exhibiting a combination of liquid-like solvation power and gas-like diffusivity, are a relatively unexplored medium for processing and crystallization of oligomer and polymeric semiconductors whose optoelectronic properties critically depend on the microstructure. Here we report oligomer crystallization from the polymer organic semiconductor, poly[2,5-bis(3-dodecylthiophen-2-yl)thieno[3,2-b]thiophene] (PBTTT) in supercritical hexane, yielding needle-like single crystals up to several microns in length. We characterize the crystals’ photophysical properties by time- and polarization-resolved photoluminescence (TPRPL) spectroscopy. These techniques reveal two-dimensional interchromophore coupling facilitated by the high degree of π-stacking order within the crystal. Furthermore, the crystals obtained from supercritical fluid were found to be similar photophysically as the crystallites found in solution-cast thin films and distinct from solution-grown crystals that exhibited spectroscopic signatures indicative of different packing geometries.

Publisher URL: http://dx.doi.org/10.1021/acs.jpclett.7b01128

DOI: 10.1021/acs.jpclett.7b01128

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.