5 years ago

Phase-Defined van der Waals Schottky Junctions with Significantly Enhanced Thermoelectric Properties

Phase-Defined van der Waals Schottky Junctions with Significantly Enhanced Thermoelectric Properties
Liangliang Yang, Yi Gu, Matthew D. McCluskey, Wenguang Zhu, Shengwen Zhou, Xianjun Ye, Zhe Wang, Qiaoming Wang
We demonstrate a van der Waals Schottky junction defined by crystalline phases of multilayer In2Se3. Besides ideal diode behaviors and the gate-tunable current rectification, the thermoelectric power is significantly enhanced in these junctions by more than three orders of magnitude compared with single-phase multilayer In2Se3, with the thermoelectric figure-of-merit approaching ∼1 at room temperature. Our results suggest that these significantly improved thermoelectric properties are not due to the 2D quantum confinement effects but instead are a consequence of the Schottky barrier at the junction interface, which leads to hot carrier transport and shifts the balance between thermally and field-driven currents. This “bulk” effect extends the advantages of van der Waals materials beyond the few-layer limit. Adopting such an approach of using energy barriers between van der Waals materials, where the interface states are minimal, is expected to enhance the thermoelectric performance in other 2D materials as well.

Publisher URL: http://dx.doi.org/10.1021/acs.jpclett.7b01089

DOI: 10.1021/acs.jpclett.7b01089

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.