5 years ago

Revealing the Chemistry and Morphology of Buried Donor/Acceptor Interfaces in Organic Photovoltaics

Revealing the Chemistry and Morphology of Buried Donor/Acceptor Interfaces in Organic Photovoltaics
Keith J. Stevenson, Raluca Gearba, Monroe P. Griffin, Andrei Dolocan, David A. Vanden Bout
With power conversion efficiencies (PCEs) of <13% and plagued by stability issues, organic photovoltaics (OPVs) still lack wide adoption, despite significant recent advances. Currently, the most progress in OPV device performance is achieved by “trial-and-error” preparation procedures that lead to complex and largely unknown—despite tremendous analytical efforts—morphologies. Here, we demonstrate a proof-of-principle, chemical imaging methodology that combines experimental high spatial sensitivity and chemical selectivity with theoretical modeling, capable of analyzing the three-dimensional composition and morphology of virtually any device. Allowing the precise measurement of composition and direct visualization of film morphology with depth, our approach reveals the intricate buried donor/acceptor (D/A) interface of a model polymer/fullerene system, poly(3-hexylthiphene-2,5-diyl)/[6,6]-phenyl-C61-butyric acid methyl ester (P3HT/PCBM). In particular, our technique is able to identify and quantify the D/A interface length, that is, the extent of molecular mixing at the D/A interface, a parameter crucial for device performance, yet never measured. Extracting this parameter allows demonstrating that, contrary to the general understanding, when starting with a fully mixed D/A phase in our model system, thermal annealing, which is known to substantially (however limited) increase the device performance by phase segregation, does not create but small amounts of pure phases, leaving the device mostly mixed, which limits the performance improvement.

Publisher URL: http://dx.doi.org/10.1021/acs.jpclett.7b00911

DOI: 10.1021/acs.jpclett.7b00911

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.