3 years ago

Black Anatase Formation by Annealing of Amorphous Nanoparticles and the Role of the Ti2O3 Shell in Self-Organized Crystallization by Particle Attachment

Black Anatase Formation by Annealing of Amorphous Nanoparticles and the Role of the Ti2O3 Shell in Self-Organized Crystallization by Particle Attachment
Gerd Duscher, Wesley D. Tennyson, Kai Wang, Nicholas Cross, Mengkun Tian, Thomas A. Zawodzinski, Christopher M. Rouleau, Masoud Mahjouri-Samani, Gyula Eres, David B. Geohegan, Alexander A. Puretzky
We use amorphous titania nanoparticle networks produced by pulsed laser vaporization at room temperature as a model system for understanding the mechanism of formation of black titania. Here, we characterize the transformation of amorphous nanoparticles by annealing in pure Ar at 400 °C, the lowest temperature at which black titania was observed. Atomic resolution electron microscopy methods and electron energy loss spectroscopy show that the onset of crystallization occurs by nucleation of an anatase core that is surrounded by an amorphous Ti2O3 shell. The formation of the metastable anatase core before the thermodynamically stable rutile phase occurs according to the Ostwald phase rule. In the second stage the particle size increases by coalescence of already crystallized particles by a self-organized mechanism of crystallization by particle attachment. We show that the Ti2O3 shell plays a critical role in both black titania transformation and functionality. At 400 °C, Ti2O3 hinders the agglomeration of neighboring particles to maintain a high surface-to-volume ratio that is beneficial for enhanced photocatalytic activity. In agreement with previous results, the thin Ti2O3 surface layer acts as a narrow bandgap semiconductor in concert with surface defects to enhance the photocatalytic activity. Our results demonstrate that crystallization by particle attachment can be a highly effective mechanism for optimizing photocatalytic efficiency by controlling the phase, composition, and particle size distribution in a wide range of self-doped defective TiO2 architectures simply by varying the annealing conditions of amorphous nanoparticles.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b02764

DOI: 10.1021/acsami.7b02764

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.