5 years ago

EZH2 modulates the DNA methylome and controls T cell adhesion through junctional adhesion molecule-A in lupus patients

Amr H. Sawalha, Pei-Suen Tsou, Patrick Coit, Nathan C. Kilian
Objective EZH2 is an epigenetic regulator that mediates H3K27 trimethylation and modulates DNA methylation. The aim of this study is to characterize the role of EZH2 in CD4+ T cells upon lupus pathogenesis. Methods EZH2 expression levels were determined in CD4+ T cells isolated from lupus patients and healthy controls. The epigenetic effects of EZH2 overexpression in CD4+ T cells were evaluated using a genome-wide DNA methylation approach. Gene expression and miRNAs were assessed by qPCR while protein expression was examined by Western blotting. A cell adhesion assay was used to assess adhesion of CD4+ T cells to human microvascular endothelial cells. Results EZH2 and H3K27me3 levels were increased in CD4+ T cells in lupus compared to healthy controls. MiR-26a and miR-101 downregulated EZH2, and were reduced in lupus CD4+ T cells. Overexpressing EZH2 in CD4+ T cells resulted in significant DNA methylation changes. Genes involved in leukocyte adhesion and migration, including F11R encoding JAM-A, become hypomethylated in CD4+ T cells when EZH2 is overexpressed. Overexpression of EZH2 resulted in increased JAM-A expression and CD4+ T cell adhesion. Pre-incubation of EZH2-transfected CD4+ T cells with neutralizing antibodies against JAM-A significantly blunted cell adhesion. Similarly, CD4+ T cells from lupus patients overexpressed JAM-A and adhered significantly more to endothelial cells compared to T cells from healthy controls. Blocking JAM-A or EZH2 significantly reduced endothelial cell adhesion of lupus CD4+ T cells. Conclusions We identified a novel role for EZH2 in T cell adhesion mediated by epigenetic remodeling and upregulation of JAM-A. Blocking EZH2 or JAM-A might have a therapeutic potential in lupus by reducing T cell adhesion, migration, and extravasation. This article is protected by copyright. All rights reserved.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/art.40338

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.