3 years ago

Self-Propagated Flaming Synthesis of Highly Active Layered CuO-δ-MnO2 Hybrid Composites for Catalytic Total Oxidation of Toluene Pollutant

Self-Propagated Flaming Synthesis of Highly Active Layered CuO-δ-MnO2 Hybrid Composites for Catalytic Total Oxidation of Toluene Pollutant
Jingjie Luo, Wei Chu, Yuefeng Liu, Luming Li, Dangsheng Su, Fangli Jing
A new self-propagated flaming (SPF) technique was applied to the synthesis of highly active layered CuO-δ-MnO2 hybrid composites, for the de-polluting catalytic total oxidation of gaseous toluene vapor. Other transition metal oxide-doped MnO2 hybrid composites were also successfully prepared and investigated, ensuring a feasible strategy for the fabrication of various layered MOx-δ-MnO2 (M═Co, Ni, or Zn) hybrids. By changing the molar ratio of the precursors (KMnO4 and acetate salt) and the type of transition metal oxide introduced, it is possible to control the crystal structure and reducibility of the sheetlike hybrid composites as well as the catalytic activity for the total oxidation of toluene. The catalyst sample (CuO-δ-MnO2) with a Mn/Cu molar ratio of 10:1 exhibited the highest catalytic performance, with a lower reaction temperature of 300 °C for complete toluene removal, which was comparable to the reaction temperature for total toluene conversion by the Pt-based catalyst. The SPF technique provides an approach for developing highly efficient catalysts for the complete removal of volatile organic compounds, by allowing the facile and energy-saving fabrication of large quantities of layered CuO-δ-MnO2 hybrids.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b04380

DOI: 10.1021/acsami.7b04380

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.