5 years ago

Magnetic Field-Assisted Perovskite Film Preparation for Enhanced Performance of Solar Cells

Magnetic Field-Assisted Perovskite Film Preparation for Enhanced Performance of Solar Cells
Zhike Liu, Xiaodong Ren, Dong Yang, Juan Li, Zhou Yang, Jing Liu, Haoxu Wang, Bin Liu, Jie Lei, Shengzhong (Frank) Liu, Fei Gao, Hairui Lei, Xihong Hu, Jiexuan Jiang
Perovskite solar cells (PSCs) are promising low-cost photovoltaic technologies with high power conversion efficiency (PCE). The crystalline quality of perovskite materials is crucial to the photovoltaic performance of the PSCs. Herein, a simple approach is introduced to prepare high-quality CH3NH3PbI3 perovskite films with larger crystalline grains and longer carriers lifetime by using magnetic field to control the nucleation and crystal growth. The fabricated planar CH3NH3PbI3 solar cells have an average PCE of 17.84% and the highest PCE of 18.56% using an optimized magnetic field at 80 mT. In contrast, the PSCs fabricated without the magnetic field give an average PCE of 15.52% and the highest PCE of 16.72%. The magnetic field action produces an ordered arrangement of the perovskite ions, improving the crystallinity of the perovskite films and resulting in a higher PCE.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b03081

DOI: 10.1021/acsami.7b03081

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.