5 years ago

Identifying best crop management practices for chickpea (Cicer arietinum L.) in Northeastern Ethiopia under climate change condition

Chickpea (Cicer arietinum L.) is one of the important cool season food legumes in the semi-arid northeastern Ethiopia; however, its productivity is adversely affected by a number of abiotic and biotic factors. The objectives of this study were to assess impacts of projected climate change on grain yield of chickpea by 2030s (2020–2049) and 2050s (2040–2069) and to identify crop management options that increase productivity of the crop. The CROPGRO-chickpea model in DSSAT (Decision Support System for Agrotechnology Transfer) was used to assess impacts of projected climate change on chickpea and to identify adaptation options. The crop model was first calibrated and evaluated in the study area for simulating growth, yield and water balance of the soil. The result of the model calibration and evaluation showed that there were close agreement between the simulated and observed values that showed the performance of the model to simulate growth, phenology and yield of chickpea under semi-arid northeastern Ethiopian condition. The calibrated model was used to assess impacts of projected climate changes on chickpea and identify crop management options. The impact of projected climate change was assessed for 2030s and 2050s time periods under all the RCPs with and without CO2 fertilization. To identify crop management options, different varieties of chickpea, supplemental irrigation and change in planting dates have been evaluated. The result of climate change impact analysis on chickpea showed that grain yield is predicted to significantly increase both by 2030s and 2050s under CO2 fertilization condition across all the RCPs as compared to baseline grain yield (1961–1990). However, simulation without CO2 showed that grain yield will not significantly increase by 2030s and 2050s across all the scenarios. Based on the prediction result it can be generalized that chickpea will be benefited from the projected climate changes in northeastern Ethiopia. According to the simulation result application of two supplemental irrigation (flower initiation and pod setting stages) and early sowing significantly (P <0.05) increase grain yield of chickpea in northeastern Ethiopia under the present and future climate conditions. Selection of appropriate cultivars based on the agroecology of the area has paramount important to increase chickpea productivity under the present and future climate condition.

Publisher URL: www.sciencedirect.com/science

DOI: S0378377417302871

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.