5 years ago

Density Functional Analysis of Fluorite-Structured (Ce, Zr)O2/CeO2 Interfaces

Density Functional Analysis of Fluorite-Structured (Ce, Zr)O2/CeO2 Interfaces
Pierre-Alexandre Juan, Philippe F. Weck, Eunja Kim, Rémi Dingreville
The structures and properties of Ce1–xZrxO2 (x = 0–1) solid solutions, selected Ce1–xZrxO2 surfaces, and Ce1–xZrxO2/CeO2 interfaces were computed within the framework of density functional theory corrected for strong electron correlation (DFT+U). The calculated Debye temperature increases steadily with Zr content in (Ce, Zr)O2 phases, indicating a significant rise in microhardness from CeO2 to ZrO2, without appreciable loss in ductility as the interfacial stoichiometry changes. Surface energy calculations for the low-index CeO2(111) and (110) surfaces show limited sensitivity to strong 4f-electron correlation. The fracture energy of Ce1–xZrxO2(111)/CeO2(111) increases markedly with Zr content, with a significant decrease in energy for thicker Ce1–xZrxO2 films. These findings suggest the crucial role of Zr acting as a binder at the Ce1–xZrxO2/CeO2 interfaces, due to the more covalent character of Zr–O bonds compared to Ce–O. The impact of surface relaxation upon interface cracking was assessed and found to reach a maximum for Ce0.25Zr0.75O2/CeO2 interfaces.

Publisher URL: http://dx.doi.org/10.1021/acs.jpcc.7b03902

DOI: 10.1021/acs.jpcc.7b03902

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.