5 years ago

Revealing Ordered Polymer Packing during Freeze-Drying Fabrication of a Bulk Heterojunction Poly(3-hexylthiophene-2,5-diyl):[6,6]-Phenyl-C61-butyric Acid Methyl Ester Layer: In Situ Optical Spectroscopy, Molecular Dynamics Simulation, and X-ray Diffraction

Revealing Ordered Polymer Packing during Freeze-Drying Fabrication of a Bulk Heterojunction Poly(3-hexylthiophene-2,5-diyl):[6,6]-Phenyl-C61-butyric Acid Methyl Ester Layer: In Situ Optical Spectroscopy, Molecular Dynamics Simulation, and X-ray Diffraction
Yu-Ching Huang, Cheng-Si Tsao, Yu-Bing Lan, Cheng-Kuang Lee, Chih-I Wu, Juen-Kai Wang, Chun-Wei Pao, Pin-Hao Sher, Ping-Tsung Huang
Formation of ordered poly(3-hexylthiophene-2,5-diyl) (P3HT) molecular stacking during the freeze-drying process is tracked with in situ spectroscopy of Raman scattering, absorption, and photoluminescence. Raman spectra of pristine P3HT dissolved in 1,2-dichlorobenzene show that P3HT polymers undergo drastic ordered aggregation upon being lower than 0 °C, at which the solubility of P3HT is reached, as evidenced by the emergence of pronounced red-shifted, narrow Raman peaks (1422 and 1435 cm–1) caused by intermolecular coupling. The absorption and photoluminescence spectra bear similar temperature dependence as the results of Raman. Aggregation of P3HT is further confirmed by coarse-grained molecular dynamics simulation showing the enhanced order parameters of distance and orientation between P3HT chains upon cooling. The incorporation of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) does not significantly alter the P3HT packing configuration, as verified by nearly identical Raman features observed in P3HT:PCBM mixing solution upon cooling. While optical spectroscopy and MD simulation portrayed the short-range order of P3HT aggregates, grazing-incident X-ray diffraction exposed the long-range order by the pronounced diffraction spots corresponding to the lamellar stacking of P3HT. This study demonstrates the ability of Raman spectroscopy to reveal the short-range order of polymer packing, while the in situ monitoring illustrates that the ability of freeze-drying to separate molecular aggregation from solvent removal thus is advantageous for photovoltaic device fabrication without resorting to trial and error.

Publisher URL: http://dx.doi.org/10.1021/acs.jpcc.7b01679

DOI: 10.1021/acs.jpcc.7b01679

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.