3 years ago

Electrocatalytic Activity and Design Principles of Heteroatom-Doped Graphene Catalysts for Oxygen-Reduction Reaction

Electrocatalytic Activity and Design Principles of Heteroatom-Doped Graphene Catalysts for Oxygen-Reduction Reaction
Feng Li, Zhaoyi Shi, Pei Liang, Xiaoshuang Chen, Xintong Liu, Haibo Shu
Heteroatom-doped graphene materials have emerged as highly efficient and inexpensive and variations of graphene doping structures; however, there is still a lack of fundamental understanding of the trend and mechanisms in their ORR activity, which greatly hinders the development of highly active graphene-based catalysts. Here we use density-functional calculations to study the ORR activity and mechanism of nonmetal-element doped graphene catalysts with different doping configurations. Our results demonstrate that binding energies of ORR intermediates (i.e., *OH) on the catalysts can serve as a good descriptor for the ORR activity, attaining the optimal value at the vicinity of ∼2.6 eV. The analysis of electronic structures indicates that the ORR activity of doped graphene catalysts depends on the abundance of electronic states at the Fermi level, which dominates the charge transfer between ORR intermediates and the catalysts. Using binding energy as a descriptor, we predict the realization of highly active graphene-based electrocatalysts by the dual-doping scheme, which is supported by recent experimental reports. Moreover, we find that the catalytic activity of graphene basal planes can be activated by the B–Sb and B–N codoping approaches. This work elucidates the inherent correlation between the ORR activity of nonmetal-doped graphene catalysts and the dopant type and doping configurations, opening a route to design highly active graphene-based ORR electrocatalysts.

Publisher URL: http://dx.doi.org/10.1021/acs.jpcc.7b03093

DOI: 10.1021/acs.jpcc.7b03093

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.