3 years ago

The Influence of Linkers on Quantum Interference: A Linker Theorem

The Influence of Linkers on Quantum Interference: A Linker Theorem
Latha Venkataraman, Yuta Tsuji, Thijs Stuyver, Suman Gunasekaran
How heteroatomic substitutions affect electron transport through π-conjugated hydrocarbons has been the subject of some debate. In this paper we investigate the effect of heteroatomic linkers in a molecular junction on the electron-transmission spectrum, focusing on the occurrence of quantum interference (QI) close to the Fermi level, where conductivity can be significantly suppressed. We find that the substitution or addition of heteroatoms to a carbon skeleton at the contact positions does not change the main feature of QI due to the underlying carbon skeleton. QI in the overall system thus remains a robust feature. This empirical observation leads us to derive, in two mathematical ways, that these findings can be generalized. We note that addition or substitution of a carbon atom by a heteroatom at the contact positions will increase or decrease the number of electrons in the π-system, which will lead to a change in the alignment of the molecular orbitals of the isolated system relative to the electrode Fermi level. Both Hückel and density functional theory calculations on model systems probe the effect of this Fermi level change and confirm qualitatively the implications of the underlying mathematical proofs.

Publisher URL: http://dx.doi.org/10.1021/acs.jpcc.7b03493

DOI: 10.1021/acs.jpcc.7b03493

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.