3 years ago

Moisture source signals preserved in a 242-year tree-ring δ18O chronology in the western Himalaya

The oxygen isotope ratio (δ18O) of tree-ring cellulose is known to be a reliable proxy for hydroclimate in monsoon Asia. However, tree-ring δ18O data are still spatially and temporally limited, so a denser tree-ring network in Asia is required to better understand the dynamics of the monsoon circulation and its past variability. Here, we present a 242-year δ18O chronology calculated from five silver fir trees collected in the western (Indian) Himalaya, a region located on the northwestern periphery of the summer monsoon incursions. Response analyses using regionalized climatic data revealed that tree-ring δ18O is controlled by hydroclimatic variables, including precipitation, relative humidity, and the drought index, during the summer monsoon season. In addition, spatial correlation analyses with gridded climatic parameters showed that the strongest correlations of tree-ring δ18O are not observed with the climatic parameters at the sampling site, but with those in a region several hundred kilometers to the southwest, indicating that water vapor originating in the Arabian Sea is transported to the study site. Based on these results, we reconstructed the self-calibrating Palmer Drought Severity Index (scPDSI) for the summer monsoon season (June–September) over the past 242years (1767–2008CE), using a linear regression model that accounts for 45.0% of the actual scPDSI variance. Our chronology showed significant correlations with other tree-ring δ18O data from Nepal and Bhutan, indicating that common signals related to the moisture supply from the Bay of Bengal are also recorded in the present reconstruction. However, the tree-ring record from India often showed weak correlations with that from Bhutan, especially when the summer monsoon was relatively weak. This result, together with the fact that the water vapor at the tree site was also derived from the Arabian Sea, implies that a weaker monsoon circulation enhances the flux of Arabian Sea moisture and reduces the flux of Bay of Bengal moisture to the study region.

Publisher URL: www.sciencedirect.com/science

DOI: S0921818116305379

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.