3 years ago

α-Alkylidene-γ-butyrolactone Formation via Bi(OTf)3-Catalyzed, Dehydrative, Ring-Opening Cyclizations of Cyclopropyl Carbinols: Understanding Substituent Effects and Predicting E/Z Selectivity

α-Alkylidene-γ-butyrolactone Formation via Bi(OTf)3-Catalyzed, Dehydrative, Ring-Opening Cyclizations of Cyclopropyl Carbinols: Understanding Substituent Effects and Predicting E/Z Selectivity
Stefan France, Matthew J. Sandridge, Corey W. Williams, Brett D. McLarney
A Bi(OTf)3-catalyzed ring-opening cyclization of (hetero)aryl cyclopropyl carbinols to form α-alkylidene-γ-butyrolactones (ABLs) is reported. This transformation represents different chemoselectivity from previous reports that demonstrated formation of (hetero)aryl-fused cyclohexa-1,3-dienes upon acid-promoted cyclopropyl carbinol ring opening. ABLs are obtained in up to 89% yield with a general preference for the E-isomers. Mechanistically, Bi(OTf)3 serves as a stable and easy to handle precursor to TfOH. TfOH then catalyzes the formation of cyclopropyl carbinyl cations, which undergo ring opening, intramolecular trapping by the neighboring ester group, subsequent hydrolysis, and loss of methanol resulting in the formation of the ABLs. The nature and relative positioning of the substituents on both the carbinol and the cyclopropane determine both chemo- and stereoselective outcomes. Carbinol substituents determine the extent of cyclopropyl carbinyl cation formation. The cyclopropane donor substituents determine the overall reaction chemoselectivity. Weakly stabilizing or electron-poor donor groups provide better yields of the ABL products. In contrast, copious amounts of competing products are observed with highly stabilizing cyclopropane donor substituents. Finally, a predictive model for E/Z selectivity was developed using DFT calculations.

Publisher URL: http://dx.doi.org/10.1021/acs.joc.7b01706

DOI: 10.1021/acs.joc.7b01706

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.