3 years ago

Microscopic Analysis of the Different Perchlorate Anions Intercalation Stages of Graphite

Microscopic Analysis of the Different Perchlorate Anions Intercalation Stages of Graphite
M. Passoni, L. Brambilla, A. Li Bassi, C. Castiglioni, G. Bussetti, R. Yivlialin, C. S. Casari, L. Duò, M. Ghidelli, M. Tommasini
Driven by the perspective of large-scale, high-quality graphene production via chemical routes, the investigation of electrochemical anion intercalation between the basal graphite planes has seen a renewed interest among the scientific community. At relatively high electrochemical potentials, when oxidation occurs, graphite electrodes undergo significant anion intercalation processes. The latter swell the uppermost graphite layers (i.e., graphene sheets), reduce the interplane interaction and favor the graphite delamination in liquid. Different intercalation stages are observed in a perchloric acid electrolyte, which are usually interpreted in terms of different perchlorate penetration depths. Nonetheless, the understanding of the morphological changes occurring at the electrode surface during the different intercalation stages is still not completely clear. We combine different microscopy techniques including optical, scanning electron and electrochemical atomic force microscopies to analyze the morphological evolution of the graphite surface at different length scales as a function of the applied electrochemical potential. Whereas both carbon dissolution and blisters affect the surface on the micrometer scale as soon as intercalation starts, we find that the graphite surface is cracked on the sub-millimeter scale only when intercalation at a higher potential is reached, inducing a significant aging of the electrode surface.

Publisher URL: http://dx.doi.org/10.1021/acs.jpcc.7b04303

DOI: 10.1021/acs.jpcc.7b04303

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.