3 years ago

Design and Functionalization of the NIR-Responsive Photothermal Semiconductor Nanomaterials for Cancer Theranostics

Design and Functionalization of the NIR-Responsive Photothermal Semiconductor Nanomaterials for Cancer Theranostics
Guosheng Song, Wenlong Zhang, Guoqiang Guan, Rujia Zou, Xiaojuan Huang, Junqing Hu
Despite the development of medical technology, cancer still remains a great threat to the survival of people all over the world. Photothermal therapy (PTT) is a minimally invasive method for selective photothermal ablation of cancer cells without damages to normal cells. Recently, copper chalcogenide semiconductors have emerged as a promising photothermal agent attributed to strong absorbance in the near-infrared (NIR) region and high photothermal conversion efficiency. An earlier study witnessed a rapid increase in their development for cancer therapy, including CuS, Cu2–xSe and CuTe nanocrystals. However, a barrier is that the minimum laser power intensity for effective PTT is still significantly higher than the conservative limit for human skin exposure. Improving the photothermal conversion efficiency and reducing the laser power density has become a direction for the development of PTT. Furthermore, in an effort to improve the therapeutic efficacy, many multimode therapeutic nanostuctures have been formulated by integrating the photothermal agents with antitumor drugs, photosensitizers, or radiosensitizers, resulting in a synergistic effect. Various functional materials also have been absorbed, attached, encapsulated, or coated on the photothermal nanostructures, including fluorescence, computed tomography, magnetic resonance imaging, realizing cancer diagnosis, tumor location, site-specific therapy, and evaluation of therapeutic responses via incorporation of diagnosis and treatment.

Publisher URL: http://dx.doi.org/10.1021/acs.accounts.7b00294

DOI: 10.1021/acs.accounts.7b00294

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.