5 years ago

Photocatalytic Hydrogen Evolution Using Ni–Pd/TiO2: Correlation of Light Absorption, Charge-Carrier Dynamics, and Quantum Efficiency

Photocatalytic Hydrogen Evolution Using Ni–Pd/TiO2: Correlation of Light Absorption, Charge-Carrier Dynamics, and Quantum Efficiency
Hynd Remita, Miguel A. Valenzuela, Christophe Colbeau-Justin, Daniel Bahena Uribe, Kunlei Wang, Ana L. Luna, Patricia Beaunier, Diana Dragoe, Ewa Kowalska, Bunsho Ohtani
TiO2 surface modification with bimetallic nanoparticles (NPs) has demonstrated to be a strategy to enhance the hydrogen generation via photocatalysis and to minimize the use of expensive noble metals. A better understanding of the role of bimetallic NPs is of crucial importance to design efficient photocatalysts. Here, we show a systematic study of surface modification of commercial TiO2 (P25) with mono- and bimetallic (Ni, Pd, and Ni–Pd) NPs synthesized by radiolysis. The photocatalysts were characterized by High Resolution Transmission Microscopy (HRTEM), Scanning Transmission Electron Microscope (STEM), X-ray Diffraction (XRD), Energy-Dispersive X-ray Spectroscopy (EDS), X-ray Photoelectron Spectroscopy (XPS), and UV–vis Diffuse Reflectance Spectroscopy (DRS). The charge-carrier dynamics was studied by Time Resolved Microwave Conductivity (TRMC). The photocatalytic activity was evaluated for hydrogen generation under UV–vis irradiation using polychromatic and monochromatic lights (action spectra analysis of apparent quantum efficiency). TiO2 modified with Pd–Ni bimetallic NPs exhibits a high activity for H2 generation, and a synergetic effect of the two metals was obtained. The study of light absorption, charge-carrier dynamics, and photocatalytic activity revealed that the main role of the metal NPs is to act as catalytic sites for recombination of atomic hydrogen.

Publisher URL: http://dx.doi.org/10.1021/acs.jpcc.7b01167

DOI: 10.1021/acs.jpcc.7b01167

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.