3 years ago

Divulging the Hidden Capacity and Sodiation Kinetics of NaxC6Cl4O2: A High Voltage Organic Cathode for Sodium Rechargeable Batteries

Divulging the Hidden Capacity and Sodiation Kinetics of NaxC6Cl4O2: A High Voltage Organic Cathode for Sodium Rechargeable Batteries
Amitava Banerjee, Rajeev Ahuja, Rafael B. Araujo
In the current emerging sustainable organic battery field, quinones are seen as one of the prime candidates for application in rechargeable battery electrodes. Recently, C6Cl4O2, a modified quinone, has been proposed as a high voltage organic cathode. However, the sodium insertion mechanism behind the cell reaction remained unclear due to the nescience of the right crystal structure. Here, the framework of the density functional theory (DFT) together with an evolutionary algorithm was employed to elucidate the crystal structures of the compounds NaxC6Cl4O2 (x = 0.5, 1.0, 1.5 and 2). Along with the usefulness of PBE functional to reflect the experimental potential, also the importance of the hybrid functional to divulge the hidden theoretical capacity is evaluated. We showed that the experimentally observed lower specific capacity is a result of the great stabilization of the intermediate phase Na1.5C6Cl4O2. The calculated activation barriers for the ionic hops are 0.68, 0.40, and 0.31 eV, respectively, for NaC6Cl4O2, Na1.5C6Cl4O2, and Na2C6Cl4O2. These results indicate that the kinetic process must not be a limiting factor upon Na insertion. Finally, the correct prediction of the specific capacity has confirmed that the theoretical strategy used, employing evolutionary simulations together with the hybrid functional framework, can rightly model the thermodynamic process in organic electrode compounds.

Publisher URL: http://dx.doi.org/10.1021/acs.jpcc.7b03621

DOI: 10.1021/acs.jpcc.7b03621

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.