3 years ago

Self-Organization of Layered Inorganic Membranes in Microfluidic Devices

Self-Organization of Layered Inorganic Membranes in Microfluidic Devices
Megan R. Bentley, Qingpu Wang, Oliver Steinbock
Inorganic precipitate membranes play an important role in chemobrionics and origin of life research. They can involve a range of catalytic materials, affect crystal habits, and show complex permeabilities. We produce such membranes in a microfluidic device at the reactive interface between laminar streams of hydroxide and Co(II) solutions. The resulting linear membranes show striking color bands that, over time, expand in the direction of the Co(II) solution. The cumulative layer thicknesses (here up to 600 μm) obey square root laws, indicating diffusion control. The effective diffusion coefficients are proportional to the hydroxide concentration, but the membrane growth slows down with increasing concentrations of Co(II). On the basis of spatially resolved Raman spectra and other techniques, we present chemical assignments of the involved materials. Electron microscopy reveals that the important constituent β-Co(OH)2 crystallizes as thin hexagonal microplatelets. Under drying, the membrane curls into spirals, revealing mechanical differences between the layers.

Publisher URL: http://dx.doi.org/10.1021/acs.jpcc.7b02778

DOI: 10.1021/acs.jpcc.7b02778

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.