3 years ago

Two-dimensional Ultrathin Arrays of CoP: Electronic Modulation toward High Performance Overall Water Splitting

Two-dimensional Ultrathin Arrays of CoP: Electronic Modulation toward High Performance Overall Water Splitting
Transition metal phosphides (TMPs) have shown promising performance in electrocatalytic water splitting. However, the sluggish kinetic of oxygen evolution reaction (OER) process deteriorates their activity toward overall water splitting. To overcome this issue, two-dimensional (2D) ultrathin arrays of metal-doped CoP (MCoP; M= Fe, Ni, and Mg) were successfully prepared by using layered double hydroxides (LDHs) as precursors. The as-obtained 2D ultrathin arrays exhibit an outstanding electrocatalytic activity and long-term durability toward both half-reaction in overall water splitting. As a result, the electrolyzer assembled by FeCoP UNSAs consumes a cell potential as low as 1.60V (at 10mAcm−2). An experimental-theoretical combination study reveals that the electronic structure of Co is modulated via the incorporation of Fe, which benefits the adsorption of water molecule and the dissociation of OH group, accounting for the largely enhanced activity toward overall water splitting.

Publisher URL: www.sciencedirect.com/science

DOI: S2211285517306079

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.