3 years ago

Fluorescent Glyco Single-Chain Nanoparticle-Decorated Nanodiamonds

Fluorescent Glyco Single-Chain Nanoparticle-Decorated Nanodiamonds
Christopher Barner-Kowollik, Hongxu Lu, Kilian N. R. Wuest, Donald S. Thomas, Anja S. Goldmann, Martina H. Stenzel
We introduce the light-induced collapse of single glycopolymer chains in water generating fluorescent glyco single-chain nanoparticles (SCNPs) and their subsequent functionalization onto nanodiamonds. The glycopolymer precursors are prepared by polymerizing an acetylated mannose-based methacrylate monomer followed by a deprotection and postpolymerization functionalization step, introducing profluorescent photoactive tetrazole groups and furan-protected maleimide moieties. Subsequent UV irradiation in highly diluted aqueous solution triggers intramolecular tetrazole-mediated cycloadditions, yielding glyco SCNPs featuring fluorescence as well as lectin binding properties. The obtained SCNPs are coated onto nanodiamonds by adsorption, and the obtained hybrid nanoparticles are in depth characterized in terms of size, functionality, and bioactivity. Different coating densities are achieved by altering the SCNP concentration. The prepared nanoparticles are nontoxic in mouse RAW 264.7 macrophages. Furthermore, the fluorescence of the SCNPs can be exploited to image the SCNP-coated nanodiamonds in macrophage cells via confocal fluorescence microscopy.

Publisher URL: http://dx.doi.org/10.1021/acsmacrolett.7b00659

DOI: 10.1021/acsmacrolett.7b00659

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.