3 years ago

Label-Free and High-Throughput Detection of Biomolecular Interactions Using a Flatbed Scanner Biosensor

Label-Free and High-Throughput Detection of Biomolecular Interactions Using a Flatbed Scanner Biosensor
Fluorescence based microarray detection systems provide sensitive measurements; however, variation of probe immobilization and poor repeatability negatively affect the final readout, and thus quantification capability of these systems. Here, we demonstrate a label-free and high-throughput optical biosensor that can be utilized for calibration of fluorescence microarrays. The sensor employs a commercial flatbed scanner, and we demonstrate transformation of this low cost (∼100 USD) system into an Interferometric Reflectance Imaging Sensor through hardware and software modifications. Using this sensor, we report detection of DNA hybridization and DNA directed antibody immobilization on label-free microarrays with a noise floor of ∼30 pg/mm2, and a scan speed of 5 s (50 s for 10 frames averaged) for a 2 mm × 2 mm area. This novel system may be used as a standalone label-free sensor especially in low-resource settings, as well as for quality control and calibration of microarrays in existing fluorescence-based DNA and protein detection platforms.

Publisher URL: http://dx.doi.org/10.1021/acssensors.7b00263

DOI: 10.1021/acssensors.7b00263

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.