3 years ago

Rapid Generation of Universal Synthetic Promoters for Controlled Gene Expression in Both Gas-Fermenting and Saccharolytic Clostridium Species

Rapid Generation of Universal Synthetic Promoters for Controlled Gene Expression in Both Gas-Fermenting and Saccharolytic Clostridium Species
Dechen Jia, Yong Wang, Yang Gu, Yuqian Jiang, Lin Jin, Gaohua Yang, Weihong Jiang
Engineering solventogenic clostridia, a group of important industrial microorganisms, to realize their full potential in biorefinery application is still hindered by the absence of plentiful biological parts. Here, we developed an effective approach for rapid generation of a synthetic promoter library in solventogenic clostridia based on a dual-reporter system (catP-lacZ) and a widely used strong thl promoter. The yielded artificial promoters, spanning 2 orders of magnitude, comprised two modular components (the core promoter region and the spacer between RBS and the translation-initiating code), and the strongest promoter had an over 10-fold-higher activity than the original expression part Pthl. The test of these synthetic promoters in controlled expression of sadh and danK in saccharolytic C. acetobutylicum and gas-fermenting C. ljungdahlii, respectively, gave the expected phenotypes, and moreover, showed good correlation between promoter activities and phenotypic changes. The presented wide-strength-range promoters here will be useful for synthetic biology application in solventogenic clostridia.

Publisher URL: http://dx.doi.org/10.1021/acssynbio.7b00155

DOI: 10.1021/acssynbio.7b00155

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.