3 years ago

Synthetic Protein Scaffolds for Biosynthetic Pathway Colocalization on Lipid Droplet Membranes

Synthetic Protein Scaffolds for Biosynthetic Pathway Colocalization on Lipid Droplet Membranes
Ian Wheeldon, Jyun-Liang Lin, Jie Zhu
Eukaryotic biochemistry is organized throughout the cell in and on membrane-bound organelles. When engineering metabolic pathways this organization is often lost, resulting in flux imbalance and a loss of kinetic advantages from enzyme colocalization and substrate channeling. Here, we develop a protein-based scaffold for colocalizing multienzyme pathways on the membranes of intracellular lipid droplets. Scaffolds based on the plant lipid droplet protein oleosin and cohesin-dockerin interaction pairs recruited upstream enzymes in yeast ester biosynthesis to the native localization of the terminal reaction step, alcohol-O-acetyltransferase (Atf1). The native localization is necessary for high activity and pathway assembly in close proximity to Atf1 increased pathway flux. Screening a library of scaffold variants further showed that pathway structure can alter catalysis and revealed an optimized scaffold and pathway expression levels that produced ethyl acetate at a rate nearly 2-fold greater than unstructured pathways. This strategy should prove useful in spatially organizing other metabolic pathways with key lipid droplet-localized and membrane-bound reaction steps.

Publisher URL: http://dx.doi.org/10.1021/acssynbio.7b00041

DOI: 10.1021/acssynbio.7b00041

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.