5 years ago

Autonomous Cell Migration to CSF1 Sources via a Synthetic Protein-Based System

Autonomous Cell Migration to CSF1 Sources via a Synthetic Protein-Based System
Kevin Truong, Anam Qudrat
Inflammatory lesions, often seen in diseases such as rheumatoid arthritis, atherosclerosis and cancer, feature an acidic (i.e., low pH) microenvironment rampant with cytokines, such as CSF1. For potential therapeutic intervention targeted at these CSF1 sources, we have assembled a system of four proteins inside a cell (i.e., HEK293) that initially had no natural CSF1-seeking ability. This system included a newly engineered CSF1 chimera receptor (named CSF1Rchi), the previously engineered Ca2+ activated RhoA (i.e., CaRQ), vesicular stomatitis virus glycoprotein G (VSVG) and thymidine kinase (TK). The binding of CSF1 to the CSF1Rchi generated a Ca2+ signal that activated CaRQ-mediated cellular blebbing, allowing autonomous cell migration toward the CSF1 source. Next, the VSVG protein allowed these engineered cells to fuse with the CSF1 source cells, upon low pH induction. Finally, these cells underwent death postganciclovir treatment, via the TK suicide mechanism. Hence, this protein system could potentially serve as the basis of engineering a cell to target inflammatory lesions in diseases featuring a microenvironment with high levels of CSF1 and low pH.

Publisher URL: http://dx.doi.org/10.1021/acssynbio.7b00076

DOI: 10.1021/acssynbio.7b00076

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.