3 years ago

Decoupling Resource-Coupled Gene Expression in Living Cells

Decoupling Resource-Coupled Gene Expression in Living Cells
Tatenda Shopera, Lian He, Tolutola Oyetunde, Tae Seok Moon, Yinjie J. Tang
Synthetic biology aspires to develop frameworks that enable the construction of complex and reliable gene networks with predictable functionalities. A key limitation is that increasing network complexity increases the demand for cellular resources, potentially causing resource-associated interference among noninteracting circuits. Although recent studies have shown the effects of resource competition on circuit behaviors, mechanisms that decouple such interference remain unclear. Here, we constructed three systems in Escherichia coli, each consisting of two independent circuit modules where the complexity of one module (Circuit 2) was systematically increased while the other (Circuit 1) remained identical. By varying the expression level of Circuit 1 and measuring its effect on the expression level of Circuit 2, we demonstrated computationally and experimentally that indirect coupling between these seemingly unconnected genetic circuits can occur in three different regulatory topologies. More importantly, we experimentally verified the computational prediction that negative feedback can significantly reduce resource-coupled interference in regulatory circuits. Our results reveal a design principle that enables cells to reliably multitask while tightly controlling cellular resources.

Publisher URL: http://dx.doi.org/10.1021/acssynbio.7b00119

DOI: 10.1021/acssynbio.7b00119

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.